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Abstract. Large language models (LLMs) hold promise for generating
plans for complex tasks, but their effectiveness is limited by sequential
execution, lack of control flow models, and difficulties in skill retrieval.
Addressing these issues is crucial for improving the efficiency and inter-
pretability of plan generation as LLMs become more central to automation
and decision-making. We introduce a novel approach to skill learning in
LLMs by integrating process mining techniques, leveraging process discov-
ery for skill acquisition, process models for skill storage, and conformance
checking for skill retrieval. Our methods enhance text-based plan genera-
tion by enabling flexible skill discovery, parallel execution, and improved
interpretability. Experimental results confirm the effectiveness of our ap-
proach, with our skill retrieval method surpassing state-of-the-art accuracy
baselines under specific conditions.

Keywords: Large Language Model · Plan Generation · Process Mining ·
Agentic Context Retrieval · Skill Learning

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in nat-
ural language processing tasks and have shown some capacity for logical rea-
soning [22,12]. However, their performance tends to decline as the complexity of
problems increases, particularly in tasks requiring intricate reasoning or multi-step
planning [8,20]. To enhance LLM performance on reasoning tasks, researchers have
incorporated tools and plan generation capabilities, enabling LLMs to function as
agents that generate sequences of tool invocations to solve given problems [2,24,5].

Despite these advancements, existing plan generation methods, especially text-
based planners, face significant challenges when dealing with complex tasks [20].
Text-based planners typically produce flat sequences of actions without an under-
lying structured control flow model [24]. This lack of control flow limits their ability
to generalize plans to other problems, making them less adaptable to varying pa-
rameters and conditions. Although these plans may include parameters, they are
still less generalizable and often require adjustments or replanning when faced with
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new tasks. Additionally, the linear sequences are less interpretable, as the absence
of logical structure makes it challenging for humans to understand the rationale
behind the plans. Furthermore, the inability to identify parallelizable actions leads
to less efficient execution, as tasks are processed sequentially without exploiting
opportunities for concurrent execution.

In contrast, code-based planners [24] inherently incorporate structured control
flow models, such as functions, loops, and conditionals, allowing for flexible and
adaptable plan generation. This flexibility likely enables effective skill learning, as
observed in works like Voyager by Wang et al. [21], where previously generated
plans (skills) can be reused and adapted to new problems. The structured con-
trol flow in code-based planners facilitates the grouping of related plans and the
dynamic adjustment of actions based on different parameters and conditions.

The problem we address in this paper is the lack of structured control flow
models in text-based LLM planners, which hinders their ability to perform effi-
cient skill learning and limits their effectiveness in generating plans for complex
tasks. Without a control flow model, text-based planners cannot effectively group
related plans or identify parallelizable actions, resulting in sequential execution
and increased latency.

To overcome this limitation, we propose a novel skill learning framework for
text-based LLM planners that integrates process mining techniques [1] to extract
structured control flow models from flat action sequences. Process mining allows
us to discover process models from execution traces, providing a structured rep-
resentation of the control flow underlying the sequences generated by text-based
planners. By incorporating these process models, we enable text-based planners
to benefit from structured control flow, similar to code-based planners, thereby
enhancing skill learning and plan generation capabilities.

Our approach addresses the limitations of text-based planners by:

1. Enabling flexible skill discovery and storage: By discovering process
models from action sequences, we can capture general behaviors and reuse
skills across similar problems, reducing the reliance on generating plans from
scratch.

2. Supporting parallel execution of actions: The structured control flow
models identify ordering constraints and parallelizable tasks, allowing for par-
allel execution where appropriate, thus reducing execution time and service
latency.1

3. Improving interpretability and reliability: Structured process models
could enhance the interpretability of the LLM’s decision-making process, fa-
cilitating debugging and optimization by developers and users.

As illustrated in Fig. 1, when given a prompt such as "Arrange my meeting
tomorrow with John," the LLM plan generator can retrieve the "meeting" skill
1 For example, in the TaskBench dataset [18], enabling parallel execution could poten-

tially answer queries 1.43 times faster, assuming equal execution time for all actions.
The time to execute a process model where groups of actions without ordering con-
straints can be executed in parallel is equal to the longest path of the plan in process
model format (e.g., BPMN).
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Fig. 1: In the skill learning approach, when given a prompt such as ’Arrange my
meeting tomorrow with John,’ the LLM plan generator retrieves the ’meeting’
skill to enhance its response. This paper introduces process mining techniques to
discover this skill in a process model format, facilitating its retrieval and offering
additional advantages, such as enabling parallelism in plan execution.

represented as a process model. This additional context enhances its response
by leveraging the structured control flow and enabling parallel execution where
appropriate.

Throughout this paper, we will use the terms plans, traces, and cases inter-
changeably. Similarly, the terms process, problem, query, and task. That is also the
case for action, activity, and step, as well as in equal measure planner, agent, and
LLM plan generator. This is to reflect on the close relationship between the fields
of planning and process mining and the overlap in the concepts they deal with.

2 Related Work

In addition to the related work discussed in the introduction, several other studies
intersect with the field of process mining. Fettke et al. corroborate our findings
from developing our approach, asserting that despite the compartmentalized re-
search, AI planning, machine learning, and process mining share common objec-
tives, making collaboration advantageous [7]. Moreover, [6] explores the potential
of utilizing LLMs for event log abstraction and process automation.

Regarding process mining and LLMs, research has primarily concentrated on
employing LLMs to perform process mining tasks. Despite the existing research
into prompt engineering for process mining [11], process question answering [3],
and event log data pre-processing [9], the application of process mining methods
to assist with LLM tasks remains largely uncharted.
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3 Skill Learning Using Process Discovery

Text-based LLM planners typically generate flat sequences of actions to solve tasks.
While effective for simple scenarios, these linear plans lack the structured control
flow needed for complex tasks involving parallelism and reusability. To address this
limitation, we propose a process mining method to discover structured control flow
models — skills — from these flat action sequences.

Our approach takes the action sequences generated by the LLM planner as
input and applies process discovery techniques, such as the Inductive Miner algo-
rithm [13], to infer general process models. These models capture the underlying
control flow, including sequential and parallel relations between actions, providing
a more expressive and flexible representation than flat plans.

Storing these skills as process models in a skill library enable the LLM planner
to reuse previous solutions when faced with similar problems, reducing the need
to generate new plans from scratch. This approach is analogous to the skill learn-
ing observed in code-based planners like Voyager [21] but applied to text-based
planners without requiring them to generate code.

The skill learning framework overview is shown in Fig. 2. The inputs are prob-
lems, and their corresponding flat plans are generated by the LLM. We transform
these plans into structured process models (skills) through process mining, which
are then stored in the skill library for future retrieval.
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Fig. 2: Schematic view of the skill learning process using process discovery.

By integrating process mining into the skill learning process, our method en-
hances text-based LLM planners by providing them with reusable, interpretable,
and parallelizable skills derived from their own generated plans. This bridges the
gap between text-based and code-based planners, enabling text-based planners to
handle more complex tasks effectively while maintaining their simplicity.
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4 Skill Retrieval Using Conformance Checking

To enhance both the accuracy and interpretability of skill retrieval in LLMs, we
propose two methods based on conformance checking: (1) retrieval solely using
conformance checking and (2) a two-stage retrieval method that combines text
semantic similarity with conformance checking. The overall pipeline is shown in
Figure 1.

1. Conformance Checking Only: This method exclusively relies on conformance
checking. This process mining technique assesses how well the control flow of a
candidate skill’s process model aligns with a bare-bones LLM-generated plan,
referred to as a thought. We define thought as a partial plan embodying a full
planning trace but not needing to be fully grounded in the state space. I.e., a
plan that does not consider information received from the execution of tools,
such as would be the case with [23]. The key metric is alignment fitness, which
measures the degree of structural match between the generated plan and the
stored process models. Focusing on structural alignment rather than textual
similarity offers superior interpretability, making it easier to understand why
a particular skill was retrieved. The direct comparison of control flows ensures
that the retrieved skills are relevant and logically compatible with the problem
at hand.

2. Two-Stage Retrieval: This hybrid method begins with a rapid filtering stage
using text semantic similarity. Embedding models like the Universal Sentence
Encoder (USE) or OpenAI’s ada-002 generate vector representations of the
problem description, and cosine similarity is used to identify the top-k can-
didates. These shortlisted candidates are then reranked using conformance
checking based on alignment fitness. This two-stage approach balances compu-
tational efficiency with high retrieval accuracy and enhanced interpretability,
as the final ranking is based on the logical structure of the process models
rather than solely on textual descriptions.

Both methods aim to outperform existing baselines that rely primarily on se-
mantic similarity between text descriptions. By integrating process model align-
ment, these methods improve the precision of skill retrieval and significantly en-
hance the retrieval process’s interpretability. This ensures that the logic behind
the skill selection is transparent, which is crucial for debugging and optimizing
LLM-driven plan executions. Additionally, the alignment values obtained from
conformance checking can help assess the quality of the generated plan.

5 Evaluation and Discussion

In this section, we aim to answer the following questions: Given the current state
of LLM plan generation, how feasible is it to learn skills using our proposed skill
learning method? And, enabled by the skills learned, how does the accuracy of the
proposed skill retrieval methods compare with previous approaches?
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5.1 Experiments
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Fig. 3a: Schematic view of the experimental pipeline for
skill learning with process discovery.

Rephrased TaskBench 
Problems

ClassificationTaskBench GT Skills in 
Process Model Format

“Arrange my meeting 
tomorrow with John”

“Arrange my meeting tomorrow 
with John”

“Arrange my meeting tomorrow 
with John”

“Arrange my meeting tomorrow 
with John”“Arranger mit møde med John”“Arranger mit møde med 

John”
“Arranger mit møde med 

John”

(Baseline) Skill Retrieval with 
Problem Embeddings Similarity

Skill Retrieval with Conformance 
Checking Similarity

Ta
sk

Be
nc

h

“Arrange my meeting 
tomorrow with John”

Cosine Similarity

Book Coffee Book 
Rooms

Send emails

Bo
ok

 
C

of
fe

e

Bo
ok

 
Ro

om
s

Se
nd

 
em

ai
ls

+ +

Conformance Checking Similarity

Fig. 3b: Schematic view of the experimental skill retrieval pipeline with conformance
checking.

Skill Learning With Process Discovery To evaluate the feasibility and effec-
tiveness of our proposed skill learning method, we conducted experiments using
the ProcessTBench synthetic dataset [16]. This experiment aimed to determine
whether our method could reliably generate accurate process models (skills). We
used conformance checking of the generated action sequences (traces) compared
to ground-truth process models provided in the dataset.

The ProcessTBench synthetic dataset includes queries requiring LLM-generated
plans, with corresponding solutions provided as action sequences using predefined
tools. Each of the 532 problems represents a distinct process instance, with 5-6
LLM-generated action sequences serving as individual cases within these instances.
The dataset simulates multiple process executions, where different paraphrasings
of a query and various plans are treated as execution instances of the same process.

To evaluate the feasibility of our skill learning method, we used conformance
checking to compare the LLM-generated plans (traces) from ProcessTBench with
the ground truth process models provided by TaskBench. This part is illustrated
in Fig. 3 3a:. We employed two widely-used conformance checking metrics, Replay
Fitness and Alignment Fitness [10], to assess how well the generated plans align
with the known process models. High conformance values indicate that accurate
process models could be derived from these traces using process discovery, sup-
porting our method’s viability. For this task, ProcessTBench uses the GPT-4-0613
model.

Skill Retrieval With Conformance Checking We conducted experiments
using the TaskBench dataset, rephrasing 533 problems (queries) 5-6 times each
to simulate scenarios where a similar problem requires a relevant solution from
the skill library. We then tested different skill retrieval methods. We compared
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the baseline method that uses problem embeddings, our proposed model using
conformance checking, and a hybrid model combining both approaches (i.e., two-
stage retrieval). We aimed to determine if conformance checking could enhance
retrieval accuracy compared to established similarity methods.

The architecture of the Skill Retrieval With Conformance Checking experiment
is depicted in Fig. 3 3b:. This architecture has the following components.

1. LLM Rephraser: Generates paraphrased descriptions of problems in English,
Danish, and French. To improve its accuracy, the model was asked first to
reason about the problem, as shown in [14].
Input: Problem description from the TaskBench dataset [18]
Output: Rephrased problem descriptions

2. DAG to Petri net Converter: Converts reference DAG process models to
Petri nets.
Input: A reference process model presented in the DAG format
Output: A process model presented in the Petri net format

3. LLM plan (thought) generator: Generates partial plans (thoughts) using
the given problem description and tools available in the TaskBench domain.
We call these plans thoughts and partial to distinguish them from the output
of more thorough and widely used planners such as ReAct [23]. I.e., due to
experimental constraints, the thought generator is asked to return a full trace
solution in one inference session, while ReAct builds the plan more thoroughly
in inference iterations.
Input: Problem description and all available tools in the TaskBench domain
Output: Plan that solves the problem as a sequence of actions.

4. Classifier: Calculates a distance distribution between rephrased and original
TaskBench problems. For conformance checking retrieval, we first generate a
thought—a partial plan representing the solution before calculating the dis-
tance. This thought is then used to compare the rephrased problem to other
problems.
Input: Rephrased problem
Output: Distance distribution over original problems.

For the classifier, the following two baseline and proposed models were used:

1. Universal Sentence Encoder (USE): Measures semantic similarity using
cosine distance between problem and skill embeddings [4].

2. ada-002: A more recent embedding model by OpenAI 2.
3. Conformance checking: Measures the alignment between the LLM-generated

plan (thought) and the stored process models, using alignment fitness as a sim-
ilarity measure [10].

4. Hybrid (ada-002 + Conformance checking): Candidates are pre-filtered
using ada-002 and re-ranked using conformance checking.

The retrieval models’ performance was evaluated using two state-of-the-art
metrics for multi-class classification and next-item recommender systems: F1-score
and Mean Reciprocal Rank (MRR) [19].
2 https://openai.com/blog/new-and-improved-embedding-model
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Table 1: Descriptive statistics of the dataset used to evaluate the feasibility of skill
acquisition through process discovery.

Mean Std. Min. Median Max.

Cases (Plans) / Process 4.08 1.27 2 4 11
Activities (Actions) / Process 3.79 0.89 2 4 8
Case Variants / Process 2.68 0.97 1 3 5
Replay Fitness / Case 0.96 0.09 0.25 1.00 1.00
Alignments Fitness / Case 0.94 0.12 0.40 1.00 1.00

Each of these evaluation metrics serves different purposes. For a given rephrased
query, the models output a ranked list of process models based on their similarity
scores. The F1-score measures the accuracy when considering only the top-ranked
prediction, counting it as correct if it matches the actual class. The Mean Recip-
rocal Rank (MRR) provides a more nuanced assessment by evaluating the average
inverse rank position of the correct class in the ranked list, thus accounting for
how high the correct class appears in the recommendations.

5.2 Skill Learning with Process Discovery

In this study, we evaluated the feasibility of our proposed skill learning method us-
ing the TaskBench [18] and the ProcessTBench [16] synthetic datasets. TaskBench
contains various queries and their corresponding process models. Each query repre-
sents a separate process, and each specific instance of solving that query is consid-
ered a case. ProcessTBench extends TaskBench by providing repeated sequential
planning traces for the problems.

Table 1 summarizes the dataset characteristics, including the average number
of cases per process, the number of activities (actions) per process, and the fitness
metrics for conformance checking. The mean number of cases per process was
4.08, indicating a relatively small dataset, especially compared to popular real-
world process mining datasets like the BPI Challenges, where the number of cases
is significantly larger [17]. Despite the dataset’s small size, the high average replay
fitness (0.96) and alignment fitness (0.94) suggest that our skill learning method
is feasible. These metrics indicate that the discovered skills closely matched the
ground truth in many cases, with 75% processes achieving a perfect fitness score
for all associated cases.

Figure 4 illustrates the accuracy distribution of the generated traces. Replay fit-
ness tends to be higher than alignments, suggesting the planner’s difficulty assem-
bling individual components into a coherent sequence. E.g., for a specific query in
ProcessTBench, the ground truth process model was ∧(→ (A,B),→ (C,D,E, F )),
but the planner produced the sequence E, F, A, B, C, D, resulting in a replay fitness
of 0.9 and an alignment fitness of 0.66. Although the planner accurately captured
most relationships between actions, it struggled with correctly ordering them. This
suggests that sequence alignment, and consequently the creation of complete con-
trol flow models, could be particularly challenging for LLMs — a challenge that
is somewhat expected given that reasoning is a known weakness.
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Fig. 4: Summary of the overall accuracy of the traces generated by the planner for
n=2173 cases.

Table 2: F1 score and MRR for the four retrieval methods. The best result across
each metric is highlighted in bold. The ada-002 X Conformance Checking @ 3
is the hybrid model described in Section 5.1, with 3 nearest neighbors retrieved
during the first stage.

F1 MRR

USE 0.66 0.71
ada-002 0.91 0.94
Conformance Checking 0.75 0.84
ada-002 X Conformance Checking @ 3 0.90 0.93

The experiment aimed to demonstrate that a real-life dataset of ’similar prob-
lems’ would exhibit sufficient variance to allow the capture of accurate process
models. However, in this study, the variance was artificially generated using the
synthetic ProcessTBench dataset, where an LLM was prompted to ’generate more
plan variants,’ which may not fully replicate real-world conditions. Finally, al-
though ProcessTBench contains a relatively low number of traces, process dis-
covery algorithms are not the sole real-life contributors to skill learning. Human
experts can also play a crucial role in defining the correct skills. Overall, the ev-
idence suggests that when automated process discovery tools are combined with
additional data and expert input, it is likely feasible to construct a robust skill
library using our proposed skill learning method.

5.3 Skill Retrieval with Conformance Checking

The results in Table 2 show that the ada-002 model outperforms the other models
in terms of F1 score and MRR. The combination of ada-002 and Conformance
Checking also delivers strong performance, nearly matching the accuracy of the
ada-002 model. This suggests at first glance that the baseline method, using ada-
002, is better for Skill Retrieval than our proposed methods using conformance
checking.

It is worth observing that ada-002 performs 11% better than in the documenta-
tion provided by OpenaAI, the model’s creators. This suggests that our rephrased
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Fig. 5: performance of the proposed ada-002 and conformance hybrid model, given
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ness) threshold = 0.0. The figure reveals that with a counterfactual conformance
checking threshold of 0.7 alignment fitness, the combined ada-002 and Confor-
mance Checking would outperform all other methods.

queries were less complex than what was used in their benchmark (sentence simi-
larity); see Footnote 2. We couldn’t find previous work on a comparable experiment
for conformance checking.

Finally, we show that the results above might change when relaxing one exper-
imental constraint: the accuracy of the planner. To understand the impact of the
plan (thought) generator accuracy on the relative performance of our models, we
did a sensitivity analysis, shown in Fig. 5. It turns out that the combined ada-002
and conformance-checking model would outperform ada-002, given a generator ac-
curacy of 0.7 or more. In our opinion, a threshold of 0.7 is not too low. It could be
realistically achieved with better planner design (cp. with the planner accuracy 1
with an average of 0.94 and std of 0.12, and with TaskBench achieving 0.9 node
and 0.71 edge prediction [18]).

These findings lead us to believe that, with better "thought" generator design,
integrating conformance checking with other retrieval models could be a promising
direction for future research. As discussed in Section 4, the proposed Skill Retrieval
approach is also more interpretable and accurate.

While generating ’thoughts’ initially introduces additional LLM inference over-
head, this investment can lead to overall inference savings compared to methods
like ReAct. Since the generated plans can be stored and reused for similar prob-
lems in the future, the need for repeated inference is reduced. Additionally, the
ability to identify and execute parallelizable actions within these plans allows for
concurrency savings, further enhancing efficiency.

Finally, it’s important to note that ada-002 has been outperformed by newer
embedding models since conducting these experiments, with improvements of up
to 25% [15]. Similarly, more recent LLMs have surpassed the one used for skill
retrieval in this study. These advancements could significantly impact the results,
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suggesting that future research should evaluate the effects of these newer models
on skill learning and retrieval.

6 Conclusion

Our experiments suggest the feasibility of using process mining techniques for
skill learning in text-based LLM planners. By integrating conformance checking
into skill retrieval, we may improve the accuracy and interpretability of plan gen-
eration. These advancements could pave the way for more efficient and reliable
LLM-driven automation solutions. More interpretable LLM plan generation can
give businesses greater control and transparency over automated processes. As
LLMs’ role in decision-making expands, effectively managing and understanding
these systems will be increasingly important.

In the future, we aim to develop our experimental framework further. Gener-
ating more data and creating more sophisticated LLM plan generators will enable
more general conclusions. Furthermore, controlling for more confounding variables,
such as LLM and embedding models, would increase the robustness of the observed
effects. We have developed a skill learning framework and presented its theoretical
properties. Still, we have not created a skill "usage" framework to gather evidence
for our approach’s end-to-end effectiveness. Lastly, we have tested skill retrieval in
a closed-set classification setting, but the open-set classification is also a realistic
use case worth exploring.
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